Проф. д-р инж. такаши кийота, Доц. д-р инж. Николай Милев
РЕЗЮМЕ
Статията е фокусирана върху феномена на втечняването на почвата по време на земетресения, като се разглеждат различни събития, свързани с втечняване в България и Япония. Основният пример е земетресението в град Ното, Япония, през 2024 г., където са анализирани щетите, причинени от втечняването на почвата. Разгледани са поражения и в градове на 100 km и 150 km от епицентъра на земетресението като съответно Учинада и Ниигата. Статията разглежда както съвременни, така и исторически примери на втечняване, като предоставя информация за случаи в България през 20-ти век. Авторите подчертават важността на правилното инженерно проектиране за минимизиране на щетите и анализират мерки за справяне с втечняването
Статията включва и препоръки за подобряване на инженерните техники и международното сътрудничество за смекчаване на последствията от втечняването.
КЛЮЧОВИ ДУМИ
втечняване, земетресение, геотехника, динамика на почвите, Ното
ЦЯЛАТА СТАТИЯ В PDF ФОРМАТ
РЕФЕРЕНЦИИ
1. Berov, B., Ivanov, P., Frangov, G., Dobrev, N., & Krastanov, M. (2017). Liquefaction susceptibility of quaternary deposits in Bulgaria. International Multidisciplinary Scientific GeoConference: SGEM, 17(1.2), 499-506.
2. Brankov, G. (1983). Vrancea earthquake in 1977. Its After-effects in the People’s Republic of Bulgaria. Publishing House of BAS, Sofia.
3. Germanov, T., & Kostov, V. (1994). Liquefaction potential evaluation of sands from NPP sites. In International conference on soil mechanics and foundation engineering (pp. 1311-1320).
4. Hamova, M., Frangov, G., Zayakova, H., Perikliyska, M., and Mihaylov, A. (2015). Soil liquefaction in Bulgaria–examples, prognoses and countermeasures.
5. Ivanov, I. (2008). Regarding some dynamic characteristics of the soils and the liquefaction potential of sands in Sofia. International Multidisciplinary Scientific GeoConference: SGEM, 2, 459.
6. Karastanev, D., & Tchakalova, B. (2021). Liquefaction potential assessment of saturated loess. Geologica Balcanica, 50(1), 37-44.
7. Kazakov, K., Mihova, L., & Partov, D. (2019). Comparative analysis of different finite element models of the soil-buried arch bridge interaction. Građevinski materijali i konstrukcije, 62(4), 15-28.
8. Milev, N. Y., & Koseki, J. (2019). Experimental evaluation of shear wave velocity change induced by repeated liquefaction of Sofia sand by undrained cyclic triaxial tests. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions (pp. 3932-3941). CRC Press.
9. Nakov, R., and Dobrev, N. (2014). Geological risk assessment methodology, Report for Ministry of Regional Development and Public Works of Bulgaria.
10. Stoynev, S., Berov, B., & Ivanov, P. (2021). Soil liquefaction hazard in Bulgaria. International Multidisciplinary Scientific GeoConference: SGEM, 21(1.1), 217-224.
11. Yasuda, S. (2014). Allowable Settlement and Inclination of Houses Defined After the 2011 Tohoku: Pacific Ocean Earthquake in Japan. In: Maugeri, M., Soccodato, C. (eds) Earthquake Geotechnical Engineering Design. Geotechnical, Geological and Earthquake Engineering, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-03182-8_5.