Доц. д-р инж. Йордан М. Йорданов
РЕЗЮМЕ
Цел на работата е оценка на ролята на основните фактори в механизма на формиране на непрекъснатите (in situ) петролни акумулации. На базата на редица еталонни примери се счита, че скални тела с нетрадиционни акумулации съдържат над 3-4% ОВ (кероген), но оптималната тегловна маса на ТОС в скалите е 6-8%. Дебелината на битуминозните интервали е най-често в интервала 30-120 m, със средна стойност 30-40 m. Локализационният механизъм („капанирането“) се контролирана от интензитета на микробаричните аномалии, матричната хидрофобност, адхезионните сили, капилярното противодействие, както и от петрофизичния профил на нефтогазомайчините скали. При тези условия се реализира зареждащ механизъм, обусловен от възникналото свръхналягане от трансформацията на ОМ в скалите по линията „кероген-газ“, „нефт-газ“, „кондензат-газ“. Чрез този тип „зареждане“ се насищат микро и нанопорести вместващи среди, които съдържат матрична и т.н. органична порестост, която по генетичен признак се явява вторична и е продукт от фазовата трансформацията на ОМ (керогена) в скалите. Формално е пресметнато, че за ІІ тип кероген органичната порестост съставлява около 0,5% за 1 тегловен процент ТОС. В резултат на проведените обобщения е заключено че: ако първичната миграция е 100% възпрепятствана от филтрационни съпротивления, адхезионни сили и капилярно противодействие, се формира „същинска in situ акумулация“; ако е частично реализирана, с ограничен миграционен път – са налице условия за „квази-in situ акумулации“. При мащабен трансфер на пластови флуиди, с условия за протичане на вторична миграция на автономно сепарирана ВВ фаза, се образува конвенционално насищане и локализиране на подвижната ВВ фаза в геокапан.
КЛЮЧОВИ ДУМИ
нетрадиционна петролна акумулация, квази-непрекъсната акумулация, лимитирана първична миграция
ЦЯЛАТА СТАТИЯ В PDF ФОРМАТ
РЕФЕРЕНЦИИ
1. Йорданов, Й. 2013. Възникване на аномално високо порово налягане (АВПН) от метаморфизма на органичното вещество (ОВ) в скалите. Оценъчни модели. Год. На МГУ, Св.“Геология и геофизика“, т.56, стр. 71-80.
2. Йорданов, Й. 2018. Дефинитивни белези на непрекъснатите (in-situ) петролни акумулации. Минно дело и геология, 4, стр. 26-33.
3. Магара, К. 1982.Уплотнение пород и миграция флюидов.Москва, Недра, 296 стр.
4. Chengzao Jia, Min Zheng and Yongfeng Zhang.2016. Some key issues on the unconventional petroleum systems. Petroleum Research (2016) 2,113-122.
5. Chenghua Ou, Chaochun Li, Dongming Zhi, Lie Xue, and Shuguang Yang. 2018. Coupling accumulation model with gas-bearing features to evaluate low-rank coalbed methane resource potential in the southern Junggar Basin, China. AAPG Bulletin, v. 102, no. 1 (January 2018), pp. 153–174.
6. Hua Yang, Shixiang Li and Xianyang Liu. 2016. Characteristics and resource prospects of tight oil in Ordos Basin, China. Petroleum Research (2016) 1,27-38.
7. Hunt, J. 1995. Petroleum geochemistry and geology.SE.N.York,743 pp.
8. Jingzhou Zhao, Jinhua Fu, Xinshan Wei, Xinshe Liu, Xiaomei Wang, Qing Cao, Yanping Ma, and Yuanfang Fan.2012. Quasi-continuous Lithologic Accumulation System: A New Model for Tight Gas Occurrence in the Ordos Basin, China. 2011 AAPG ICE 23-26 October, 2011/ Milan, Italy
9. Jordanov, J. 2013. Graphical diagnostics of different type overpressure generation in shale formations. Proceedings of the IV International scientific and technical conference: „Geology and Hudrocarbon potential of the Balkan-Black Sea region“. Varna, 11-15 September, 204-214.
10. Liu Guangdi, Sun Mingliang, Zhao Zhongying, Wang Xiaobo and Wu Shenghe.2013. Characteristics and accumulation mechanism of tight sandstone gas reservoirs in the Upper Paleozoic, northern Ordos Basin, China. Pet. Sci.(2013)10:442-449.
11. Passey, Q.R.,K. M. Bohacs, W. L. Esch, R. Klimentidis, and S. Sinha.2010. OGS New Perspectives on Shales –July 28, 2010.
12. Roger M. Slatt, R. and N.O’Brien. 2011. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bulletin, v. 95, no. 12 (December 2011), pp. 2017–2030 2017.
13. Romero-Sarmiento, M.,M.Ducros, B.Carpentier, F.Lorant, M.Cacas, S. Pegaz-Fiornet, S.Wolf, S.Rohais, I.Moretti.2013. Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling:Application to the Mississippian Barnett Shale. Marine and Petroleum Geology 45 (2013) 315-330.
14. Tongwei Zhang, Xun Sun, and Stephen C. Ruppel.2013. Hydrocarbon Geochemistry and Pore Characterization of Bakken Formation and Implication to Oil Migration and Oil Saturation. Search and Discovery Article #80321 (2013).Posted October 31, 2013. AAPG Annual Convention and Exhibition, Pittsburgh, Pennsylvania, May 19-22, 2013.
15. Vitaly Kuchinskiy, 2013. Organic Porosity Study: Porosity Development within Organic Matter of the Lower Silurian and Ordovician Source Rocks of the Poland Shale Gas Trend* AAPG 2013 Annual Convention & Exhibition Pittsburgh, PA, USA May.
16. Yuanjia Han, B. Horsfield, R. Wirth, N. Mahlstedt, and S. Bernard.2017. Oil retention and porosity evolution in organic-rich shales. AAPG Bulletin, v. 101, no. 6 (June 2017), pp. 807–827
17. Zhengjian Xu, Luofu Liu, Tieguan Wang, Kangjun Wu, Wenchao Dou, and Xingpei Song. 2017. Analysis of the charging process of the lacustrine tight oil reservoir in the Triassic Chang 6 Member in the southwest Ordos Basin, China. Can. J. Earth Sci. 54: 1228–1247 (2017) dx.doi.org/10.1139/cjes-2016-0192.