Доц. д-р Ирина Маринова
РЕЗЮМЕ
Изследването представя два типа на псевдоморфоза на плочест калцит (известна и като текстура на плочест кварц) в находище „Къклица”, разкриващи се на близка надморска височина, но разделени в пространството. Първият тип се явява под формата на тънки жилки, разкриващи се непосредствено над полегат разлом на отделяне. Представен е от кварц, псевдоромбичен адулар (10-20 об.%), рядък пирит и електрум с високи съдържания. Вторият тип присъства в стръмни жили, запълващи листрични разломи с ясни тектонски контакти. Той е развит на по-високо ниво от първия, също във висящото крило на разлома на отделяне. Представен е от кварц, псевдоромбичен адулар (1-2 об.%) и редки зърна пирит и електрум. Съставът на електрума от двата типа е различен: електрумът от първия тип има отношение Au/Ag над 3, а в електрума от втория тип това отношение е под 3. Първият тип на псевдоморфоза на плочест калцит е моделиран като първи хоризонт на кипене, с относително по-висока степен на кипене и по-ефективно отлагане на Au. Вторият тип може да бъде моделиран или като второ кипене на по-високо ниво от първото или като друг импулс на кипящ хидротермален разтвор. Той е образуван при по-ниска температура и показва по-ниска ефективност на отлагане на Au. Въз основа на литературни данни и данни от Крумовградското златорудно поле е заключено, че обичайното кипене не е достатъчно за ефективно отлагане на електрум в епитермални условия. За образуване на богати епитермални руди на благородни метали е необходимо почти пълно изпарение на летливите съединения в отворена хидротермална система.
Ключови думи
Крумовградско златорудно поле, електрум, калцит, адулар
РЕФЕРЕНЦИИ
1. Weissberg, B.G. Gold-silver ore-grade precipitates from New Zealand thermal waters. Econ. Geol., 1969, 64, 95-108.
2. Browne, P. R. L. and A. J. Ellis . The Ohaaki-Broadlands geothermal area, New Zealand: mineralogy and related geochemistry. American J. Science, 1970, 269, 97-131.
3. Browne, P. R. L. Hydrothermal alteration in active geothermal fields. Annual Reviews Earth Plan. Sci., 1978, 6, 229-250.
4. Keith, T. E. C. and L. J. P. Muffler. Minerals produced during cooling and hydrothermal alteration of ash flow tuff from Yellowstone drill hole Y-5. J. Volcanology and Geothermal Research, 1978, 3/3-4, 373-402.
5. Brown, K. L. Gold deposition from geothermal discharges in New Zealand. Econ. Geol., 1986, 81/4, 979-983.
6. Tulloch, A. J. Mineralogical observations on carbonate scaling in geothermal wells as Kawerau and Broadlands: Worshop, 4th, New Zealand Geothermal Proceedings, 1982, 131-134.
7. Simmons, S. F. and B. W. Christenson. Origins of Calcite in a Boiling Geothermal System. American J. Science, 1994, 294, 361-400.
8. Simmons, S. and P. Browne. Hydrothermal Minerals and Precious Metals in the Broadlands-Ohaaki Geothermal System: Implications for Understanding Low-Sulfidation Epithermal Environments. Econ. Geol., 2000, 95/5, 971-999.
9. Saunders, J. A., P. A. Schoenly. Boiling, colloid nucleation and aggregation, and the genesis of bonanza Au–Ag ores of the Sleeper deposit, Nevada. Miner. Deposita, 1995, 30, 199–210.
10. Hedenquist, J. W., R. A. Arribas., E. Gonzalez-Urien. Exploration for epithermal gold deposits. Reviews in Economic Geology, 2000, 245-277.
11. Moncada, D., S. Mutchler, A. Nieto, T. J. Reynolds, J. D. Rimstidt, R. J. Bodnar. Mineral textures andfluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. J. Geochemical Exploration, 2012, 114, 20-35.
12. Pokrovski, G., N. Akinfiev, A. Borisova, A. Zotov, K. Kouzmanov. Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modeling. In: Garofalo P. and J. Ridley (eds) Gold-Transporting Hydrothermal Fluids in the Earth’s Crust. – Geol. Soc., Spec. Publ., 2014, 402, London; http://dx.doi.org/10.1144/SP402.4.
13. Fournier, R. O. Silica Minerals as Indicators of Conditions during Gold Deposition. In: Tooker EW (ed) Geological characteristics of Sediment- and volcanic-hosted disseminated gold deposits – Search for an occurrence model; USGS Bulletin, 1985, 1646, 15-26.
14. Dong, G., G. Morrison, S. Jaireth. Quartz Textures in Epithermal Veins, Queensland – Classification, Origin, and Implication. Econ. Geol., 1995, 90, 1841-1856.
15. Dong, G. and G. Morrison. Adularia in epithermal veins, Queensland: morphology, structural state and origin. Miner Deposita, 1995, 30, 11-19.
16. Etoh, J., E. Izawa, K. Wanatabe. Bladed Quartz and Its Relationship to Gold Mineralization in the Hishikari Low-Sulfidation Epithermal Gold Deposit, Japan. Econ. Geol., 2002, 97/8, 1841-1851.
17. Morteani, G., G. Ruggieri, P. Moller, C. Preinfalf. Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscanu (central Italy). Miner. deposita, 2011, 46/2, 197-210.
18. Marinova, I., E. Tacheva. Bladed quartz texture and its relationship to electrum mineralization in the Eocene, low-sulfidation Kuklitsa gold deposit, SE Bulgaria. Preliminary data. – Geol. Macedonica, 2016, issue 4, part 2, 393-400.
19. Moncada, D., R. J. Bodnar. Gangue mineral textures and fluid inclusion characteristics of the Santa Margarita Vein in the Guanajuato Mining District, Mexico. Cent. Eur. J. Geosci., 2012, 4(2), 300-309.
20. Marchev, P., B. Singer, D. Jelev, S. Hasson, R. Moritz, N. Bonev. The Ada Tepe deposit: a sediment-hosted, detachment fault-controled, low-sulfidation gold deposit in the Eastern Rhodopes, SE Bulgaria. Schweiz. Mineral. und Petrogr. Mitt., 2004, 84, 59-78.
21 Marinova, I., V. Ganev, R. Titorenkova. Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria. Miner. Deposita, 2014, 49/1, 49-74.
22 Bodnar, R. J., T. J. Reynolds, C. A. Kuehn. Fluid-inclusion systematics in epithermal systems. Reviews in Econ. Geol., 1985, 2, 73–97
23. Saunders, J. A., D. L. Unger, G. D. Kamenov, M. Fayek, W. E. Hames and W.C. Utterback. Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au–Ag depos-its, Northern Great Basin, USA. Mineralium deposita, 2008, 43/8, 715- 734.
24 Sander, M. V. and J. E. Black. Crystallization and Re-crystallization of Growth-Zoned Vein Quartz Crystals from Epithermal Systems – Implications for Fluid Inclusion Studies. Econ. Geol., 1988, 83, 1052-1060.
25. Петровская, Н. В. Самородное золото. Москва, Наука, 1973, 347 с.
26. Buchanan, L.J. Precious metal deposits associated with volcanic environments in the Southwest: Arizona Geological Society Digest, 1981,14, 237-262.
27. Saunders, J. A. Colloidal transport of gold and silica in epithermal precious-metal systems: Evidence from the Sleeper deposit, Nevada. Geology, 1990, 18, 757-760.
28. Saunders, J. A. Silica and gold textures in bonanza ores of the Sleeper deposit, Humboldt County, Nevada: evidence for colloids and implications for epithermal ore-forming process. Econ. Geol., 1994, 89, 628–638.
29. Желев, Д. Златно находище „Хан Крум“, участък „Ада тепе“. В: Милев, В. (ред.) Златните находища в България. Земя ’93, София, 2007, 104-115.
30. Nachev, I. and C. Nachev. 2001. Alpine plate-tectonic of Bulgaria. Sofia, Artik, 198 pp.
31. Marton, I. Formation, preservation and exhumation of sedimentary rock-hosted gold deposits in the Eastern Rhodopes, Bulgaria. Ph.D. Thesis, Terre & Environment, 2009, 84, 134 pp.
32. Bonev, N. Tokachka shear zone southwest of Krumovgrad in Eastern Rhodopes, Bulgaria: an extensional detachment. Ann. Univ. Sofia, 1996, 89, 1 – Geology, 97-106.
33. Бонев, Н. Структура и еволюция на Кесебирския гнайсов купов, Източни Родопи. Дисертация, 2002, Софийски университет.
34. Bonev, N., J.-P. Burg, Z. Ivanov. Mezozoic-Tertiary structural evolution of an extensional gneiss dome – the Kesebir-Kardamos dome, eastern Rhodope (Bulgaria-Greece). Internat. J. Earth Sci., 2006, 95, 318-340
35. Горанов, A., Д. Кожухаров, И. Боянов, Е. Кожухарова. Обяснителна записка към геоложката карта на България в М 1:100,000, картни листове Крумовград и Сапе. София, 1995, 97 стр.
36. Peycheva, I., M. Ovtcharova, S. Sarov, Y. Kostitsin. Age and metamorphic evolution of metagranites from the Kessebir reka region, Eastern Rhodopes – Rb-Sr isotope data. Abstr. XVI Congress CBGA, 1998, p. 471.
37. Bonev, N., P. Marchev, M. Ovtcharova, R. Moritz, A. Ulianov. U-Pb LA-ICP/MS zircon geochronology of metamorphic basement and Oligocene volcanic rocks from the SE Rhodopes: inferences for the geological history of the Rhodope crystalline basement. Proceed. Ann. Confer. Bulg. Geol. Soc., 2010, 115-116.
38. Bonev, N., R. Spikings, R. Moritz, P. Marchev. Timing of extensional exhumation of the Eastern Rhodope high-grade basement (Bulgaria): 40Ar/39Ar constraints. Proceed. Ann. Confer. Bulg. Geol. Soc., 2010, 117-118.
39. Goranov, A. and G. Atanasov. Litho-stratigraphy and formation conditions of Maastrichtian-Paleocene deposits in Krumovgrad District. Geol. Balcanica, 1992, 22, 71-82.
40. Горанов, A., Д. Кожухаров, И. Боянов, Е. Кожухарова. Обяснителна записка към геоложката карта на България в М 1:100,000, картни листове Крумовград и Сапе. София, 1995, 97 стр.
41. Казълова-Станкова, Т. Морфоложки типове златна минерализация в участък „Къклица“, находище „Хан Крум“, Източни Родопи, ЮИ България. Геология и мин. ресурси, 2012, 1-2, 17-22.
42. Начев, И. Седиментология и необилизъм. В: И. Начев и Р. Иванов (ред.) Геодинамика на Балканите, 1980, 37-49.
43. Marton, I., R. Moritz, R. Spikings. Application of low-temperature thermochronology to hydrothermal ore deposits: Formation, preservation and exhumation of epithermal gold systems from the Eastern Rhodopes, Bulgaria. Tectonophysics, 2010, 483, 240-254.
44. Marchev P., P. Kibarov, R. Spikings, M. Ovtcharova, I. Márton, R. Moritz. 40Ar/39Ar and U-Pb geochronology of the Iran Tepe volcanic complex, Eastern Rhodopes. Geologica Balcanica, 2010, vol. 39, no. 3, 3-12.
45. Кунов, А., В. Стаматова, П. Петрова. Златно-сребърно-полиметалното рудопроявление от нискосулфиден (адулар-серицитов) тип „Ада тепе”, Крумовградско. Минно дело и геология, 2001, 4, 16-20.
46. Marinova I., P. Nenova. Preliminary data on electrum mineralization in Kaklitsa occurrence, Krumovgrad Goldfield, Eastern Rhodope Mountain, SE Bulgaria. – In: Geosciences 2007, Ann. Confer. Bulgarian Geol. Soc., Abstr., 13-14 Dec., Sofia, 2007, 46-47.
47. Marinova, I., P. Nenova. Preliminary data on electrum mineralization in the Skalak occurrence, Krumovgrad Goldfield, Eastern Rhodope Mountain, SE Bulgaria. – In: 60 years education in Geology, Abstr., St. Kl. Ohridski Univ. Publ. House, Sofia, 2008, 51-55.
48. Marinova I. Preliminary data on the electrum mineralization in the Synap occurrence, Krumovgrad goldfield, Eastern Rhodope mountain, SE Bulgaria. – In: Mineral diversity. Research and Preservation, working papers, Sofia, 7-10 Oct. 2011, 2012, 161-170.
49. Marton, I, R. Moritz, P. Marchev, T. Vennemann, J. Spangenberg. Fluid evolution within Eastern Rhodopian sedimentary rock-hosted low-sulfidation epithermal gold deposits, Bulgaria. In: N.J. Cook, I. Ozgens, T. Oyman (eds). Au-Ag-telluride-selenide deposits, Proceedings of the IGCP 486 2006 field workshop. Izmir, 2006. pp 116-123.
50. Buchanan, L. J. Precious metal deposits associated with volcanic environments in the Southwest: Arizona Geological Society Digest, 1981, 14, 237-262.
51. Shimizu, T., H. Matsueda, D. Ishiyama, O. Matsubaya. Genesis of Epithermal Au-Ag Mineralization of the Koryu Mine, Hokkaido, Japan. Econ. Geol., 1998, 93. 303-325.
52. Hayashi, K.I., T. Maruyama, H. Satoh. Precipitation of gold in a low-sulfidation epithermal gold deposit: insights from a sub-millimetre-scale oxygen isotope analysis of vein quartz. Econ. Geol., 2001, 96, 211-216.
53. Cline, J., R. Bodnar and J. Rimstidt. Numerical Simulation of Fluid Flow and Silica Transport and Deposition in Boiling Hydrothermal Solutions: Applications to Epithermal Gold Deposits. J. Geophys. Research, 1992, 97, no. B6, 9085-9103.
54. Weatherley, D. K. and R. W. Henley. Flash Vaporization during earthquakes evidenced by gold deposits. Nature Geoscience, 2013,6, 294-298.
55. Кольцов, А. Б. Метасоматические процессы на золоторудных месторождениях в метатеригенных толщах. Изд. Петербургския университет, Петербург, 2002, 236 с.
56. Migdisov, A. A. & A. E. Williams-Jones. A predictive model for metal transport of silver chloride by aqueous vapour in ore-forming magmatic-hydrothermal systems. Geochim. Cosmochim. Acta, 2013, 104,123–135.
57. Mazzarini, F. and I. Isola. Hydraulic connection and fluid overpressure in upper crustal rocks: Evidence from the geometry and spatial distribution of veins at Botrona quarry, southern Tuscany, Italy. J. Str. Geol., 2007, 29, 1386-1399.
58. Deming, D. Introduction to Hydrogeology. Boston, MA, McGraw-Hill, 2002.
59. Philipp, S., F. Afsar, A. Gudmundsson. Effects of mechanical layering on hydrofracture emplacement and fluid transport in reservoirs. Frontiers in Earth Science, 2013, 1; doi: 10.3389/feart.2013.00004.
60. Ghani, I., D. Koehn, R. Toussaint, C. W. Passchier. Dynamics of hydrofracturing and permeability evolution in layered reservoirs. Frontiers in Physics, 2015, 3, doi: 10.3389/fphy.2015.0006.
61. Reader-Harris, M. Orifice Plates and Venturi Tubes. Experimental Fluid Mechanics. Heidelberg: Springer, DE; 2015; pp 393.
62. Shikazono, N., M. Shimizu. Compositional Variations in Au-Ag Series Mineral from Some Gold Deposits in the Korean Peninsula. Mining Geology, 1986, 36/200, 545-553.
63. Seward, T. M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim. Cosmochim. Acta, 1973, 37, 379-399.
64. Shenberger, D. M. and H. L. Barnes. Solubility of gold in aqueous sulfide solutions from 150 to 350°C. Geochim. Cosmochim. Acta, 1989, 53, 269-278.
65. Hunt, J. M. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. AAPG Bulletin, 1990, 74, 1, 1-12.
66. Vass, A., D. Koehn, R. Toussaint, I. Ghani, S. Piazolo. The importance of fracture-healing on the deformation of fluid-filled layered systems. J. Str. Geol., 2014, 67, 94-106.
67. Márton I., T. Jeleva, Y. Dintchev, N. Zhivkov, and R. Gosse. Sedimentary Rock-Hosted Gold Mineralization at Ada Tepe, Krumovgrad District, Bulgaria: Review of Prospect-Scale Geological, Structural and Geochemical Features. В: Voudouris P., C. R. Siren, and I. Márton. 2016. Eocene to Miocene Hydrothermal Deposits of Northern Greece and Bulgaria: Relationships Between Tectonic-Magmatic Activity, Alteration, and Gold Mineralization. – Soc. Econ. Geol. Guidebook Series, vol. 54, Field Trip (Balkans II), Sept. 29–Oct. 2, 2016, 17-42.
68. Cox, S.F. Injection-Driven Swarm Seismicity and Permeability Enhancement: Implications for the Dynamics of Hydrothermal Ore Systems in High Fluid-Flux, Overpressured Faulting Regimes—An Invited Paper. Econ. Geol., 2016, 111/3, 559-587.
69. Staude, S., P. D. Bons, G. Markl. Hydrothermal vein formation by extension-driven dewatering of the middle crust: An example from SW Germany. Earth and Planet. Science Letters, 2009, 286, 387–395.
70. Sibson, R. H., J. McM. Moore, A.H. Rankin. Seismic pumping – a hydrothermal fluid transport mechanism. The Geol. Soc. London, 1975, 131, 653-655.